The physioFIRST pilot study: A pilot randomised clinical trial for the efficacy of a targeted physiotherapy intervention for femoroacetabular impingement syndrome (FAIS)

Joanne L Kemp¹, Sally L Coburn¹, Denise M Jones¹,

¹ Latrobe Sport and Exercise Medicine Research Centre

Kay M Crossley¹

nneLKemp e: j.kemp@latrobe.edu.au

Why do we need to do the physioFIRST study?

FAIS has large impact on affected individuals

While most people with cam morphology do not develop FAIS (ie: develop signs and symptoms), for those that do, the impact is enormous Agricola 2013, Kemp 2014, Hinman 2013

Quality of life scores similar to people with end stage hip OA. Clohisy 2013, kemp 2014

Young and middle aged people with large family and work commitments Griffin 2016, Kemp 2014

Unable to exercise = big consequences for general health Kemp 2014, Filbay 2015

Increased risk (10 times greater) of end stage hip OA and THA Agricola 2012, 2013

Pilot RCTs vital to avoid research funding wastage (wrong outcomes, wrong inclusion, wrong intervention...)

What are treatment options for FAIS?

Surgical RCTs of hip arthroscopy (registered)

Trial	Country	Sample Size	Interventions	Planned Reporting
UK FASHIoN	UK (Warwick)	344	Arthroscopic surgery vs physiotherapy	2017
Aus FASHIoN	Australia	120	Arthroscopic surgery vs physiotherapy	2018
FAIT	UK (Oxford)	120	Arthroscopic surgery vs physiotherapy	2017
FIRST	Canada and Finland	220	Arthroscopic surgery vs arthroscopic washout	2017
HIPARTI	Norway, Sweden Belgium, Canada and Australia	140	Arthroscopic surgery vs diagnostic arthroscopy	2020
US Army WA	USA	60	Arthroscopic surgery vs physiotherapy	unknown

Non-surgical treatment RCTs

No RCTs for physiotherapy, exercise or weight loss

Surgery should be last treatment option, even though it is often first....

Also, government no longer funding FAIS surgery.....

Given this, RCTs for non-surgical treatments urgently needed.

Aims

Primary aim: determine the feasibility of conducting a fullscale RCT evaluating the effects of a physiotherapy intervention compared to a control intervention to reduce pain and improve function in people with FAIS.

Secondary aims: explore the magnitude of effect sizes for the physiotherapy interventions compared to the control intervention for pain and function.

Methods

Study design:

Pilot, participant- and assessor-blinded RCT Conforming to SPIRIT guidelines and Australian Good Clinical Practice guidelines. Approved by the La Trobe University HREC (approval number: 15-076). Registered with the Australian and New Zealand Clinical Trials Registry (number: ACTRN12615001218583).

Participants

Inclusion and Exclusion criteria

Inclusion:

Men and women aged 18-50 years Hip or groin pain on impingement (>3/10 on visual analogue scale [VAS]) for \geq 6 weeks) Radiographic FAIS (Alpha angle $\geq 60^{\circ}$ on either anterior-posterior (AP) pelvic or Dunn-45° hip radiographs.

Exclusion:

Physiotherapy treatment in the past three months;

Previous hip surgery or other major hip injury;

Other musculoskeletal conditions including rheumatoid arthritis;

Unable to perform testing procedures;

Unable to commit to a 12-week treatment program or baseline and follow-up assessments; Contraindications to X-ray (including pregnancy)

physioFIRST pilot study procedure

Outcomes

Primary Outcome: feasibility of a full-scale RCT

Integrity of the study protocol

Appropriateness of inclusion criteria

Training of staff

Accessibility of the intervention to participants,

Acceptability of the intervention to participants and physiotherapists

Time burden for participants

Facilities required to deliver the intervention.

Recruitment and retention procedures

Participant enrolment (at least 80% of eligible participants enrolled) Participant adherence with the intervention (at least 80% of participants attended 75%) of appointments; and completed 75% of the prescribed exercises) Participant losses to follow-up (at least 80% of participants complete the follow-up)

Primary Outcome: feasibility of a full-scale RCT

Evaluation of outcome measurement collection

Questionnaires

Physical impairment measures

Blinding

Appropriateness of randomisation & blinding methods Participants and Assessor awareness of group allocation Whether both treatment groups were credible

Outcome measure selection and sample size calculation

PROM with largest between-group effect size, (>previously reported MIC); Estimate sample size - future fully-powered study (sample size calculations using the effect size data).

Secondary Outcomes: Between-group differences in change score

Hip-related Symptoms and QoL

iHOT-33 = reliable, valid, 0-100 points Thorborg 2015, Mohtadi 2012 HOOS pain and QoL subscales = reliable, valid, 0-100 points Thorborg 2015, Kemp 2013

Hip muscle strength

Abduction, adduction, extension, external rotation

Hand-held dynamometry, reliable methods, Nm/kg Kemp 2012

Hip joint range

Flexion range, inclinometer, reliable methods Hatton 2014

Functional task performance

Single leg hop for distance, Side bridge trunk endurance Kemp 2016

Interventions

Targeted intervention for FAIS: An impairment based model

Elements of targeted physiotherapy intervention

Hip strength (AB, AD, EXT, ER) **Trunk strength Functional and balance retraining Sports specific retraining ROM optimization** Education

Interventions: Tidier guidelines

	What	Targeted physiotherapy			
	Who	Ph	ysiotherapists		
	provides				
	How	Face-to-face individual ses			
2	Where	Physiotherapy clinic (& clinic gym) in			
	When &	8x30 mins physiotherapy; and wee	kly 30 mins supe		
	how much	progressed based on VAS <3/10			
	Tailoring	Individualised selection hip & trunk	Standardised str		
		strength, functional exercise and	Standardised ed		
		manual therapies	increasing physic		
		Progressive, tailored physical activity			
		program			
	How well	Treatment response in files and adherence recorded in			

Results

13 people excluded (3 as no time; 1 as pregnant; 1 as past history of Perthe's disease; and 8 as did not respond after making initial contact)

11 people excluded (6 as alpha angle <60°; 4 as pain located only in the lumbar spine; 1 as pain <3/10)

4 people lost to follow-up (1 as elected to have hip arthroscopy surgery during trial; one due to pregnancy; one as had other major abdominal surgery due to illness; one drop out and did not respond to repeated follow-up contact)

Participant characteristic	Mean	Standard deviation
Age (years)	37	8
Gender (number (%) of women)	17 (71%)	NA
Height (metres)	1.70	0.08
Weight (kilograms)	73.7	11.6
Body mass index (kg/m²)	25.4	3.4

Eligibility criteria conform with Warwick agreement Pre-study training of therapists adequate Protocol fidelity maintained through study duration Accessibility of intervention was not adequate Intervention credible to both groups, both groups would take part again Time burden not excessive, clinic facilities adequate

Eligibility criteria conform with Warwick agreement Pre-study training of therapists adequate Protocol fidelity maintained through study duration Accessibility of intervention was not adequate Intervention credible to both groups, both groups would take part again Time burden not excessive, clinic facilities adequate

Recruitment

50% interested applicants eligible **100% of eligible people enrolled** 17/24 attended all physiotherapy and supervised gym sessions 1/24 attended at least 80% of physiotherapy and supervised gym sessions 6/24 attended less than 80% of physiotherapy and supervised gym sessions No adverse events were recorded

Recruitment

50% interested applicants eligible **100% of eligible people enrolled 17/24** attended all physiotherapy and supervised gym sessions 1/24 attended at least 80% of physiotherapy and supervised gym sessions 6/24 attended less than 80% of physiotherapy and supervised gym sessions No adverse events were recorded

Outcome measures

Outcome measures

Outcome

Sample size calculation

Between group effect sizes of change scores for PROs and impairments

Dashed line represents large effect size, dotted line represents moderate effect size

Positive effect size denotes difference in change score favouring the semi-standardised active physiotherapy intervention group

Discussion

Can we apply study findings in a clinical context?

Meet Mr X.....

Mr X (study participant)

27 year old semi-professional footballer

Had not played for 6 months at time of initial assessment

Met all eligibility criteria

Mr X results (targeted physiotherapy group)

Change in primary and secondary outcomes

Return to Sport?

Able to train twice weekly and compete once weekly at full load at the completion of the rehabilitation program, with minimal hip and groin pain.

Conclusion and take home message

- 1. A full-scale RCT for FAIS is feasible and necessary
- 2. Future studies need 164 participants, at least 2 clinicians, appropriate strategies, such as incentives for retention
- A targeted individualised physiotherapy intervention may 3. improve function and reduce pain in people with FAIS
- Due to the pilot nature of this study, these results must be 4. interpreted with caution, until replicated in a full-scale study

e: j.kemp@latrobe.edu.au