Biomechanics associated with Achilles tendinopathy

Dr Melinda Franetovich Smith
UQ Development Fellow

Collaborators: Dr Mark Creaby, Prof Kay Crossley, Dr Anthony Schache, Narelle Wyndow, Mr Conor Honeywill
Achilles tendinopathy in runners

Prevalence 6 - 10%
Incidence 9-14%
(Lopes 2012; Van Ginckel 2009; Hein 2014)

General population 6%
Elite runners 36-52%
(Kujala 2005)

Runners 30x more likely
Achilles tendinopathy

Why?

Intrinsic factors

Extrinsic factors

Relative load

Footwear
Surface

Distance
Frequency
Speed
Type

Achilles tendinopathy
Intrinsic risk factors

- Central adiposity
- Increased BMI
- Diabetes mellitus
- Genetics
- Exposure to medications
- Biomechanics
- Age?
- Strength knee flexors, PFs
- DF ROM
- Foot posture

(Brukner & Khan 2016)
Biomechanical factors - running

Kinematics

Kinetics

Neuromotor
Biomechanical factors - running

Kinematics
Kinetics
Neuromotor
Biomechanical factors - running

Frontal plane rearfoot kinematics

<table>
<thead>
<tr>
<th>Measure</th>
<th>Controls</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcaneus - vertical TDA*</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Calcaneus - tibia TDA</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Calcaneal at HS (B)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Calcaneal at HS (S)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Eversion at HS (B)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Eversion at HS (S)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Eversion at 10% stance</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Pronation at 10% stance</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Max pronation</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Calcaneal max (B)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Calcaneal max (S)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Eversion max (B)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Eversion max (S)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Max eversion</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>AEV max</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Eversion ROM (B)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Eversion ROM (S)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Total pronation ROM</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Calcaneal ROM (B)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Calcaneal ROM (S)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>AROM ev/in</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>AROM in</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Total eversion</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Calcaneus - tibia TOA</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Calcaneus - vertical TOA</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Initial velocity</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Max pronation velocity</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>AVEL ev</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Time to max eversion</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Time to max pron</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>tAEVmax</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Time to max pron velocity</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>tAVEL ev</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>AVEL in</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Greater in controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater in cases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.8° 2.0°
Biomechanical factors - running

Leg muscle activity

[Diagram showing leg muscle activity with various measurements and percentages, indicating differences between controls and cases.]
Biomechanical factors - running

No difference hip kinematics

↓

Knee flexion (foot contact & mid stance)

↑

Kinematics

No difference GRF

←

Kinetics

Neuromotor

Joint moments?

↓

Gluteus medius & rectus femoris
Post-heel strike
Biomechanical factors – proximal considerations

Frontal/transverse plane

Sagittal plane
Design

Kinematics
N=19
37 (8) years
1.8 (0.6) m
77.4 (10.2) kg
37.6 (16.4) km

Kinetics
N=14
43 (8) years*
1.8 (0.5) m
82.3 (11.1) kg
38.1 (13.2) km
VISA-A 70 (10)

Neuromotor

- VISA
- Kinetic (joint moments)
Kinematics

Degrees

Flex / DF
Add / EVN
ER

CTRL
AT

Degrees

Degrees

Degrees

Degrees
Kinetics – Peak

CTRL
AT

Flex / DF
Add / EVN
ER
Kinetics – Impulse

![Diagram showing kinetics and impulse with graphs and data points.]

CTRL AT
Kinetics – Impulse

CTRL

AT
Kinetics - peak

- Flex / DF
- Add / EVN
- ER

CTRL
AT
AT + FO

Nm/Kg

Flex / DF
Add / EVN
ER

CTRL
AT
AT + FO
Kinetics - peak

CTRL
AT
AT + FO

Flex / DF
Add / EVN

Nm/Kg

-1
-0.5
0
0.5
1

-1
-0.5
0
0.5
1

A green check mark indicates that the peak is within the acceptable range.
Kinetics - impulse

Flex / DF	Add / EVN	ER
CTRL | AT | AT + FO
Nm.Sec/Kg | Nm.Sec/Kg | Nm.Sec/Kg

CTRL
AT
AT + FO
Kinetics - impulse

CTRL
AT
AT + FO

Flex / DF
Add / EVN
ER

Nm / Kg

Nm.Sec / Kg
Neuromotor

SOL offset 18 (22) ms earlier relative to LG
Neuromotor
Summary of findings – AT vs CONTROL

No difference hip/ankle/knee kinematics
(Creaby 2017; Azevedo 2009)

Delayed & shorter duration GMED, GMAX
Less synchronous triceps surae
(Franetttovich Smith 2014; Wyndow 2013; Azevedo 2009)

Increased hip joint moments
No difference knee/ankle moments
(Creaby 2017; Kim 2015)

Pre-existing?
Compensation?
Biomechanical factors – what evidence?

Cross-sectional vs Prospective

Running biomechanics vs Achilles tendinopathy
Biomechanical factors – what evidence?

Cross-sectional vs Prospective

13 studies
• Kinematics (7)
• Kinetics (7)
• Neuromotor (5)

3 studies
• Kinematics (2)
• Kinetics (2) - PP

14 studies runners
Biomechanical factors – prospective studies

- More laterally directed force at forefoot FF
- More medially directed force distribution MS
- Decreased total displacement of COF (van Ginckel 2009)
- No difference dynamic arch index (Kaufman 1999)
- Ankle DF Eversion (Hein 2014)
- Knee flexion (Hein 2014)

Neuromotor?
Kinetics?
(joint moments)
Take home message

Include proximal assessment

(...in addition to local)
Summary of findings – AT with ORTHOSES

No difference hip kinematics / joint moments / gluteal control
(Boldt 2013)

Reduced impulse & peak eversion moment
(McMillan 2008)
Take home message

Individualised approach

(Arnold 2018; Bishop 2016; Mundermann 2003; Scott 2015)
Neuromotor Control of Gluteal Muscles in Runners with Achilles Tendinopathy

MELINDA M. FRANETTOVICH SMITH1, CONOR HONEYWILL1, NARELLE WYNDOW2,3, KAY M. CROSSLEY3, and MARK W. CREEBY4,5

1School of Physiotherapy, Australian Catholic University, AUSTRALIA; 2Melbourne School of Physiotherapy, University of Melbourne, AUSTRALIA; 3Division of Physiotherapy, School of Health and Rehabilitation Sciences, University of Queensland, AUSTRALIA; 4School of Exercise Science, Australian Catholic University, AUSTRALIA; and 5Centre for Health, Exercise & Sports Medicine, University of Melbourne, AUSTRALIA

Hip Biomechanics Are Altered in Male Runners with Achilles Tendinopathy

MARK W. CREEBY1, CONOR HONEYWILL2, MELINDA M. FRANETTOVICH SMITH3, ANTHONY G. SCHACHE4, and KAY M. CROSSLEY3

1School of Exercise Science, Australian Catholic University, AUSTRALIA; 2School of Physiotherapy, Australian Catholic University, AUSTRALIA; 3Centre for Musculoskeletal Research, Mary MacKillop Institute for Health Research, Australian Catholic University, AUSTRALIA; 4Department of Mechanical Engineering, The University of Melbourne, AUSTRALIA; and 5La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, La Trobe University, AUSTRALIA

Triceps surae activation is altered in male runners with Achilles tendinopathy

N. Wyndow4, S.M. Cowan5, T.V. Wrigley5, K.M. Crossley4,*

4Centre for Health, Exercise and Sports Medicine, Melbourne Physiotherapy School, University of Melbourne, Melbourne, Australia
5Melbourne Physiotherapy School, University of Melbourne, Melbourne, Australia
6Division of Physiotherapy, School of Health & Rehabilitation Sciences, The University of Queensland, St. Lucia Qld 4072, Australia
Dr Melinda Franettovich Smith
melinda.smith@uq.edu.au
Hip
• No difference (Azevedo 2017; Creaby 2017)

Knee
• Reduced knee flexion (Azevedo 2009)
• Greater knee flexion (Donoghue 2008; Hein 2014)
• No difference (Creaby 2017)

Foot/ankle
• Greater eversion ROM (Hein 2014; Donoghue 2008; Ryan 2009; McCrory 1999; Becker 2017)
• Reduced DF (Hein 2014)
• Greater DF ROM (Donoghue 2008)
• No difference eversion or DF (Creaby 2017)
• **GRF variables**
 - Delay reaching peak forces (McCrory 1999)
 - Increase in braking forces (McCrory 1999)
 - No difference (Azevedo 2009; Baur 2004)

• **Plantar pressures**
 - Laterally directed force distribution beneath forefoot FF (van Ginckel 2009)
 - More medially directed force distribution during midstance (van Ginckel 2009; Baur 2004)
 - Reduced total forward progression of COF (van Ginckel 2009)

• **Joint moments**
 - Reduced peak tibial external rotation moment (Williams 2008)
 - Reduced hip extension moment (Kim 2015)
 - Increased hip adduction & external rotation moment (Creaby 2017)
 - Reduced knee flexion moment (Kim 2015)
Plantar pressures

(Munteanu 2011; Ogbonmwan 2018)

Reduced total forward progression of COF

Laterally directed force distribution beneath forefoot at foot flat

More medially directed force during midstance
Neuromotor

(Munteanu 2011; Ogbonmwan 2018)

↓ Gluteus medius
 Post-heel strike
 (Azevedo 2009)

↓ Rectus femoris
 Post-heel strike
 (Azevedo 2009)

↓ Peroneus longus
 Weight acceptance
 (Baur 2011)

↓ Medial gastrocnemius
 Weight acceptance
 (Baur 2011)

↓ Tibialis anterior
 Pre-heel strike
 (Azevedo 2009)

↓ Gluteus medius & maximus
 Delayed onset
 Reduced duration
 (Franettovich 2014)

↓ Medial gastrocnemius
 Increased duration (Baur 2004)
 Earlier offset of SOL relative to LG
 (Wyndow 2013)

↓ Tibialis anterior
 Delayed onset (Baur 2004)