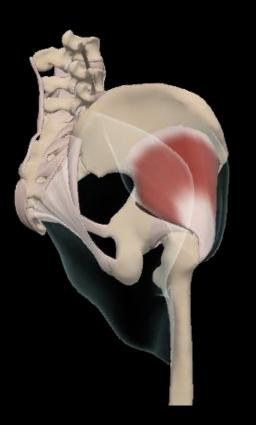
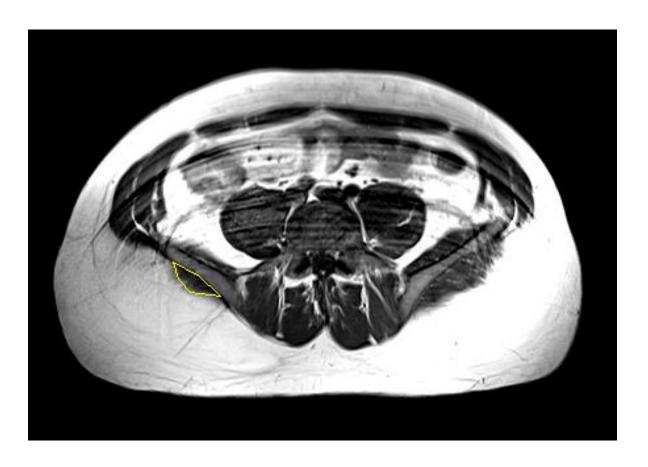
HIP MUSCLE FUNCTION AND HIP PATHOLOGY



Twitter: @ASemciw

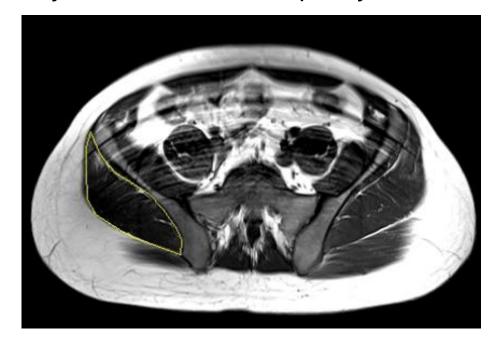
Gluteus Medius



Gluteus Minimus

MUSCLE SIZE

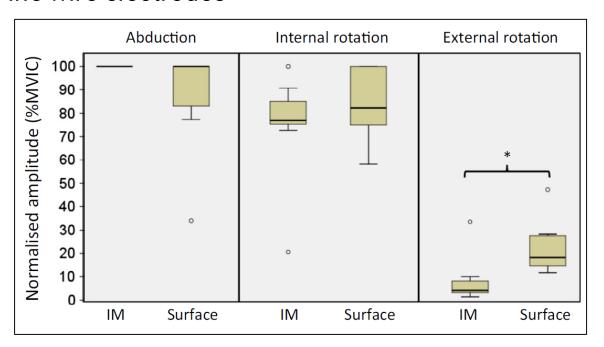
Quantitative measures-> MRI

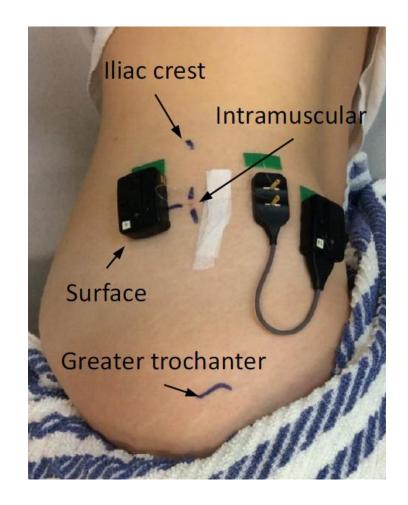


MUSCLE SIZE

Quantitative measures-> MRI

Quantify muscle size and adiposity





EMG

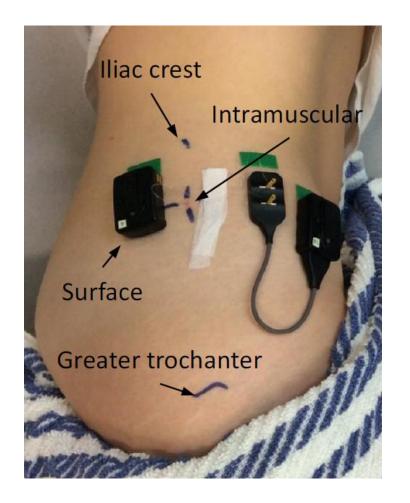
Surface electrodes

Fine wire electrodes

EMG

Surface electrodes

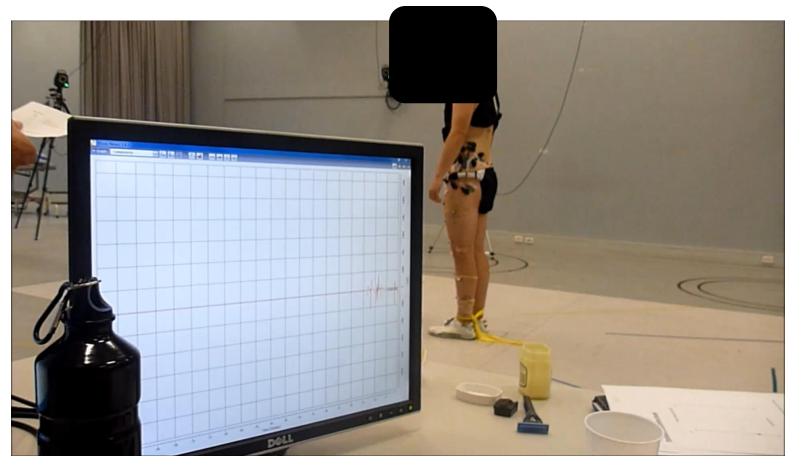
Fine wire electrodes


Records Myoelectric activity

Recorded as Volts

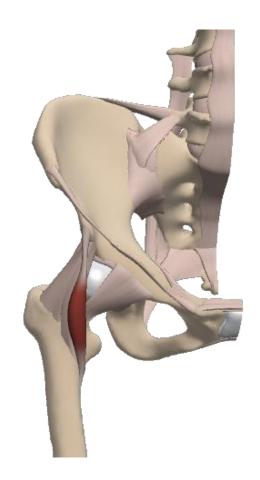
Oct-18

Generally expressed relative to another task (e.g. %MVIC)


Can provide real-time information about muscle function

EMG

How clear is our understanding of hip muscle function in young adults with hip pain?


How clear is our understanding of hip muscle function in young adults with hip pain?

Not clear at all!!!

ILIOCAPSULARIS¹

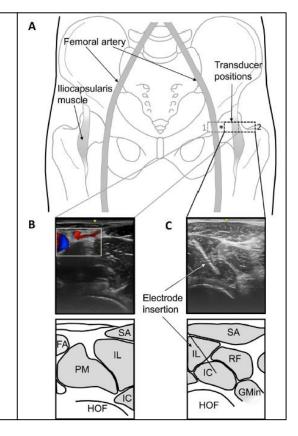
- Small muscle of the anterior hip-> large capsular attachment
- Role?
 - Anterior hip stability
 - Minimise capsular impingement

Gait & Posture 54 (2017) 300-303

Contents lists available at ScienceDirect

Gait & Posture

journal homepage: www.elsevier.com/locate/gaitpost



Short communication

Iliocapsularis: Technical application of fine-wire electromyography, and direction specific action during maximum voluntary isometric contractions

Peter Lawrenson^a, Alison Grimaldi^{a,b}, Kay Crossley^{a,c}, Paul Hodges^a, Bill Vicenzino^a, Adam Ivan Semciw^{a,c,*}

^aThe University of Queensland, School of Health & Rehabilitation Sciences, Brisbane, QLD, 4072, Australia

^bPhysiotec Physiotherapy, 23 Weller Rd, Tarragindi, QLD, 4121, Australia

^c College of Science, Health and Engineering, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia

ILIOCAPSULARIS

Hip dysplasia vs control

- Retrospective imaging audit
- Age
 - Dysplasia = 34 <u>+</u> 10 years
 - Control = 54 ± 12 years

Note: not matched for age

ILIOCAPSULARIS

Hip dysplasia vs control

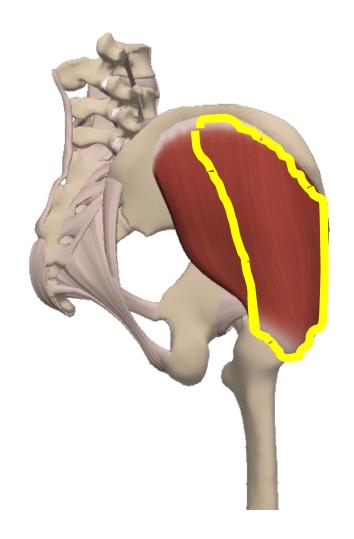
- Iliocap to Rec fem ratio
 - Width
 - Length
 - Circumference
 - CSA

ILIOCAPSULARIS

Hip dysplasia vs control

Significantly greater IC to RF ratio in dysplasia

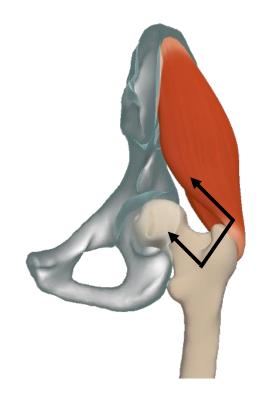
Caution: controls were older. Is this an association with age?



GLUTEUS MEDIUS

Anterior and middle segments

- Large torque producers
- Control of coronal plane motion


GLUTEUS MEDIUS

Anterior and middle segments

- Large torque producers
- Control of coronal plane motion

Posterior segment

- Small
- Hip joint stability

GLUTEUS MEDIUS¹

Asymptomatic vs symptomatic limb

- Retrospective imaging audit (CT scans)
- Unilateral dysplastic hips (19 participants)
- Age 47 years (range 35–61 years)

Liu et al. BMC Musculoskeletal Disorders 2012, 13:101 http://www.biomedcentral.com/1471-2474/13/1/101

RESEARCH ARTICLE

Open Access

Changes of gluteus medius muscle in the adult patients with unilateral developmental dysplasia of the hip

RuiYu Liu¹, XiaoDong Wen¹, ZhiQin Tong², KunZheng Wang^{1*} and ChunSheng Wang¹

GLUTEUS MEDIUS

Asymptomatic vs symptomatic limb

CSA

≈20% less CSA of GMed on symptomatic side

Implications for strength training in this populations?

Caution: Cross-sectional study Need prospective research

PINCER MORPHOLOGY

ILIOCAPSULARIS

Pincer vs control¹

- Retrospective imaging audit
- Age
 - Pincer = 33 \pm 11 years
 - Control = 54 ± 12 years

Note: not matched for age!

PINCER MORPHOLOGY

ILIOCAPSULARIS

Pincer vs control¹

Significantly less IC to RF ratio in Pincer

 \uparrow Passive stability $\approx \downarrow$ active stability

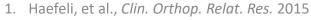
Caution: controls were older. Is this an association with age?

PINCER vs DYSPLASIA

ILIOCAPSULARIS

Pincer vs Dysplasia^{1,2}

- Retrospective imaging audit (CT scans)
- Matched in Age
 - Dysplasia = 34 <u>+</u> 10 years
 - Pincer = 33 \pm 11 years

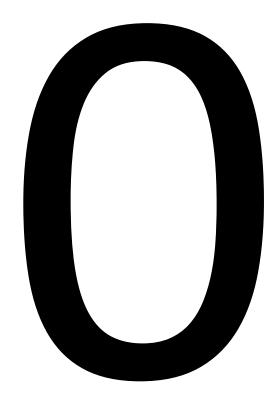

PINCER vs DYSPLASIA

ILIOCAPSULARIS

Pincer vs Dysplasia^{1,2}

Pincer = \downarrow IC thickness, width, CSA

↑ Passive stability ≈ ↓ active stability


2. Babst, et al., Clin. Orthop. Relat. Res. 2011

PINCER vs DYSPLASIA

EMG STUDIES

LABRAL TEARS

ANTERIOR HIP MUSCLES

Labral tears vs control¹

- MRI diagnosed labral tear
- Pre-surgical: hip arthroscopy
- Age 35 years (20-53)

No difference in anterior hip muscle size

Note: less hip flexion strength in symptomatic group

Muscle quality may not be as good??

Oct-18

LABRAL TEARS

EMG STUDY

Labral tears vs control¹

- Clinical symptoms
- MRI confirmation
- Age 33 (<u>+</u> 9) years
- Lunge task
 - EMG recorded during descent and ascent

Do Neuromuscular Alterations Exist for Patients With Acetabular Labral Tears During Function?

Maureen K. Dwyer, Ph.D., A.T.C., Cara L. Lewis, P.T., Ph.D., Alfred W. Hanmer, M.D., and Joseph C. McCarthy, M.D.

LABRAL TEARS

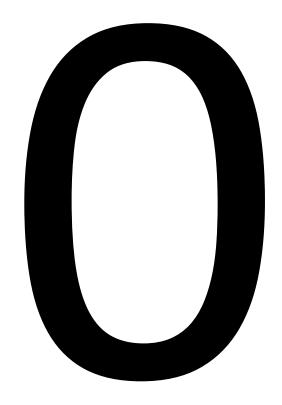
EMG STUDY

Labral tears vs control¹

GMax = less activity compared to control

No difference with

- Adductor longus
- Gluteus medius
- Rectus femoris


Do Neuromuscular Alterations Exist for Patients With Acetabular Labral Tears During Function?

Maureen K. Dwyer, Ph.D., A.T.C., Cara L. Lewis, P.T., Ph.D., Alfred W. Hanmer, M.D., and Joseph C. McCarthy, M.D.

MRI STUDIES

EMG STUDIES

Walking

• Two studies^{1,2}

↑ GMax Activity

Control hip flexion?
Or
Weak/ inefficient?

Differences in Hip Joint Biomechanics and Muscle Activation in Individuals With Femoroacetabular Impingement Compared With Healthy, Asymptomatic Individuals

Is Level-Ground Gait Analysis Enough?

Derek J. Rutherford,*^{†‡} PT, PhD, Janice Moreside,^{†§} PT, PhD, and Ivan Wong,^{||} MD Investigation performed at the Joint Action Research Laboratory, School of Physiotherapy, Dalhousie University, Halifax, Nova Scotia, Canada

EMG STUDIES

Walking

• Two studies^{1,2}

↑ GMax Activity

Or
Weak/ inefficient?

Differences in Hip Joint Biomechanics and Muscle Activation in Individuals With Femoroacetabular Impingement Compared With Healthy, Asymptomatic Individuals

Is Level-Ground Gait Analysis Enough?

Derek J. Rutherford,*^{†‡} PT, PhD, Janice Moreside,^{†§} PT, PhD, and Ivan Wong,^{||} MD Investigation performed at the Joint Action Research Laboratory, School of Physiotherapy, Dalhousie University, Halifax, Nova Scotia, Canada

Minimal differences in other muscles

Need more demanding tasks!

EMG STUDIES

Walking²

Control

Highly variable activity between participants

Coordination of Deep Hip Muscle Activity Is Altered in Symptomatic Femoroacetabular Impingement

Laura E. Diamond,¹ Wolbert Van den Hoorn,² Kim L. Bennell,¹ Tim V. Wrigley,¹ Rana S. Hinman,¹ John O'Donnell,³ Paul W. Hodges²

EMG STUDIES

Walking²

• Cam (<u>+</u> pincer)

Less variability with deep hip rotators (esp swing)

More constrained?

Coordination of Deep Hip Muscle Activity Is Altered in Symptomatic Femoroacetabular Impingement

Laura E. Diamond,¹ Wolbert Van den Hoorn,² Kim L. Bennell,¹ Tim V. Wrigley,¹ Rana S. Hinman,¹ John O'Donnell,³ Paul W. Hodges²

YOUNG ADULTS WITH HIP PAIN

MUSCLE CONSIDERATIONS

Muscle size

- Deep anterior hip muscle size may be associated with acetabular coverage^{1,2}
- Evidence of a reduction in Gmed muscle size in people with hip dysplasia³
- Evidence of no anterior hip muscle atrophy in people with labral tears⁴

Limitations

- No research in people with CAM morphology
- No understanding of changes over time
- No understanding of the association with muscle size and symptoms
 - 1. Haefeli, et al., Clin. Orthop. Relat. Res. 2015
 - 2. Babst, et al., Clin. Orthop. Relat. Res. 2011
 - 3. Liu, et al., BMC musculoskeletal disorders 2012
 - 4. Mendis, et al., Manual Ther. 2014

YOUNG ADULTS WITH HIP PAIN

MUSCLE CONSIDERATIONS

Muscle function (EMG)

- Symptomatic labral tears -> Evidence of reduced Gmax activity during a lunge¹
- Cam morphology-> Gait: evidence of increased Gmax activity² and altered deep hip muscle coordination³

Limitations

- No research on gluteus minimus or anterior hip muscles (e.g. iliocapsularis)
- Need more demanding tasks-> squat, run, kick

3. Diamond, et al., J. Orthop. Res. 2017

YOUNG ADULTS WITH HIP PAIN

WATCH THIS SPACE!

Journal of Physiotherapy 64 (2018) 55

ournal of

PHYSIOTHERAPY

journal homepage: www.elsevier.com/locate/jphys

Appraisal Trial Protocol

Femoroacetabular impingement and hip OsteoaRthritis Cohort (FORCe): protocol for a prospective study

Kay M Crossley ^a, Marcus G Pandy ^b, Sharmila Majumdar ^c, Anne J Smith ^d, Rintje Agricola ^e, Adam I Semciw ^{a,f}, Joanne L Kemp ^a, Joshua J Heerey ^a, Matthew G King ^a, Peter R Lawrenson ^f, Yi-Chung Lin ^b, Richard B Souza ^{c,g}, Andrea B Mosler ^a, Thomas M Link ^c, Ramya Srinivasan ^c, Anthony G Schache ^{a,b}

TAKE HOME MESSAGE

Our understanding of hip muscle function in young adults with hip pain has a long way to go

Current evidence suggests that

- Not all muscles are affected equally over time (e.g. different grades of pathology)
- Muscle function varies across different pathological conditions (e.g. dysplasia vs pincer)

Rehabilitation may require a targeted approach, depending on the type and stage of pathology

